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Dependency Structure Analysis(1/3) I

e Basic technique in Japanese sentence analysis

— Analysis of relationship between phrasal units called
“bunsetsu” (“chunks”).

— Each chunk modifies one of the right-side chunks

— Dependencies do not cross each other

e 1. Building dependency matrix

— Each element represents the probability of a dependency

2. Finding the optimal combination of dependencies from the

matrix

e Rule based approached — Corpus based statistical approach




Dependency Structure Analysis(2/3) I




Problems of Conventional Frameworks(1/2) I

e Must select “effective” features carefully
— Trade oftf between over-fitting and over-generalization

— The selection usually depends on heuristics




Problems of Conventional Frameworks(2/2) I

e Difficulty in acquisition of an efficient combination of features

— “Effective” selection of combinations usually decided by

heuristics

— The more specfic combinations we select, the larger

computational overhead is required




Overview of the Talk'

e Brief introduction to Support Vector Machines

— How can SVMs cope with the problems of conventional

frameworks?
e How do we apply SVMs to dependency analysis?

e Experiments and Evaluation

e Summary




Support Vector Machines (1/4) I

e V.Vapnik 1995

e T'wo strong properties

— High generalization performance independent of given

feature dimension

— Training with combinations (dependencies, co-occurrence)

of more than one features without increasing computational

overhead




Support Vector Machines (2/4) I

e Separating positive and negative (binary) examples by

Linear Hyperplane: (w-x+b, w,x € R™ beR)

e Finding optimal hyperplane (parameter w,b) with Maximal

Margin Strategy




Support Vector Machines (3/4) I

Two dashed lines (separating hyperplanes):
w-X+b==1 weR"beER

Margin:

wex; +b+1] 2
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Maximize Margin d «<» Minimize ||w||




Support Vector Machines (4/4) I

Solving the following Optimizaion Problems:

= Hlwl?

Subject to: y;[(w-x;)+b>1(G=1,...,1)

Minimize : L(w)

Rewritten into dual form:

Minimize : L(a) = 22:1 oy — % 22,3:1 ;oYY (Xi - Xj)
Subject to : a; > 0, 2221 a;y; = 0 (i=1,...,1)

Decision Function:

[

f(x) =sgn(w-x+0b) = Sgn(z ;Y (X; - X) +b)




Kernel Function (1/3) I

The case we cannot separate the training data linearly

4

Projecting training data onto a higher-dimensional space

(I)(X) . {ml, ZEQ} — {ZEl, L9, 3311132}




Kernel Function (2/3) I

Training : L(a) = 31y i — £ 30 . qaoyyiy; (B(xi) - B(x;))
Classify : Yy = sgn(Zi.:l a;y; (P(x;) - P(x)) + b)

Y
SVMs depend only on the evaluation of dot products

Need not to project training data if we can find the K that satisfies:

P(x1) - P(x2) = K(x1,%x2) K : Kernel Function

Can reduce the computational overhead considerably




Kernel Function (3/3) I

2nd Polynomial Function

K(x;,%x;) = (x; - x; + 1) = ®(x;) - D(x;) x € R* = {1, 72}

e 2 dimensional feature is projected onto 6 dimensional space
e Training with combination (co-occurance) of features

e The computational overhead dose not increase




Support Vector Machines (Summary)'

e High generalization performance independent of given feature

dimension

— Maximal Margin Strategy

e Training with combinations (dependencies, co-occurence) of

more than one features without increasing computational

overhead

— Use of Kernel function

4

Effects of smoothing between all given features




How do we apply SVMs? (1/2) I

What do we set as Positive and Negative examples?

4

All candidates of two chunks which have ...

dependency relation — Positive examples

no dependency relation — Negative examples




How do we apply SVMs? (2/2) I

e Dependency Probability

P(Dep(’i) = j‘fw) = tanh(z Oék:lyle(fk:l - f/ij) + b)
k,l

1
i) — . . .
tanh(x) T+ oxp(—2) (Sigmoid funtion)

e This conversion dose not give us a true probability,

Normalizing distance (—oco — 400) to probability value (0 — 1)

e We easily apply conventional probability-based parsing

techniques

e We adopted backward beam search method introduced by
[Sekine 2000]




Static Features vs. Dynamic Features(1/2) I

e Static Features

— Features (Lexicon, POS, distance, postion ...) of two chunks

— Solely defined by the pair of chunks




Static Features vs. Dynamic Features(2/2) I

e Dynamic Features

— Dependency relation themselves, added dynamicaly

— Applying beam search to reduce the computational overhead




Experiments(1/2) I

e Kyoto University Text Corpus Version 2.0
Training data: Articles on Jan. 1st - 7th (7958 sentences)
Test data: Articles on Jan. 9th (1246 sentences)

* Same training and test data as [Uchimoto 98|

Kernel function: 3rd polynomial (d=3)
Beam width: k=5

Evaluation method
— Dependency accuracy

— Sentence accuracy




Experiments(2/2) I

Head /Type (surface-
Left/ form, POS, POS-subcategory, inflection-
Right type, inflection-form), brackets, quotation-

Static

Features , L ,
Chunks | marks, punctuation-marks, position in sen-

tence (beginning, end)
distance(1,2-5,6-),
case-particles, brackets,

Between

Chunks , .
quotation-marks, punctuation-marks

Dynamic | Form of functional words or inflection that

Features | modifies the right chunk

e The static features are basically taken from Uchimoto’s 98 list

e No cut-off (frequency filter.. etc) for selecting features




Results '

e Degree of Kernel Function: d = 3

e Beam-Width: £k =5

# of training sentences

Dependency Acc.

Sentence Acc.

1172
1917
3032
4318
5540
6756
7958

86.52%
87.21%
87.67%
88.34%
88.66%
88.77%
89.09 %

39.31%
40.06%
42.94%
44.07%
45.20%
45.36%
46.17%




Effects of Dynamic Features'

e Degree of Kernel Function: d = 3

e Beam-Width: k=5

# of training sentences

Dynamic

without Dynamic

1172
1917
3032
4318
5540
6756
7958

86.52%
87.21%
87.67%
88.34%
88.66%
88.77%
89.09%

86.12%
86.81%
87.62%
87.33%
88.40%
88.55%
88.77%




Kernel Function vs. Accuracy'

3,032 sentences, Beam Width: K=5

Dimension(d) | Dependency Acc. | Sentence Acc.
1 N/A N/A
86.87% 40.60%

2
3 87.67% 42.94%
4 87.72% 42.78%

e d-th polynomial kernel —
training with all combinations of features up to d

e This results support our institution —
The consideration of combination (dependency, co-occurance)

of features is quite important for Japanese dependency analysis




Comparison with Related Work'

Uchimoto 98

e Based on Maximal Entropy Model

e 87.2% (our method achieves 89.1%)

e He also pointed out the importance of considering combination
(dependency, co-occurance), however these combinations are
selected heuristically
These manual selection dose not always cover all effective

combinations

e The Kernel Principle allow us to build a separating hyperplane
considering the any combinations of features without increasing

the computational overhead




Future Works I

Great amount of computational overhead is required since our

proposed method uses all candidates of dependency relations

4

Selecting only the effective portion of examples

e Introduction of (hand-crafted) constraint on non-dependency

e Integration with other simple models

e Lrror-driven data selection




Summary I

e By applying SVMs, we can achieve a high accuracy even with a
small training data (7958 sentences)

e We can show the high generalization performance and high
feature selection abilities of SVMs

e The consideration of combinations (dependency, co-occurance)

of features is important for Japanese dependency analysis.
Use of Kernel functions enables feature selection more

efficiently than conventional frameworks




